

I Year M.Sc. (DCC) Degree Examination, January 2018 (Y2K13 Scheme) (Fresh and Repeaters) MATHEMATICS M101 : Algebra

Time : 3 Hours

Max. Marks: 80

Instructions : 1) Answer**any 5** questions, choosing atleast**two** from **each** Part.

2) All questions carry equal marks.

PART-A

1.	a)	Let $\phi : G \to \overline{G}$ be a homomorphism with Kernel K and let N be a normal	
		subgroup of G. Then show that $\frac{G}{N} \approx \frac{\overline{G}}{\overline{N}}$.	5
	b)	Prove that Inn (G) $\approx \frac{G}{Z(G)}$, where Inn (G) is a group of inner automorphisms	
		of G and Z(G) in the centre of G.	5
	c)	Show that every group in isomorphic to a subgroup of A(S), for some appropriate S.	6
2.	a)	Verify the class equation for symmetric group $S_{_3}$, by using generator-relation form.	5
	b)	Prove that any two p-sylow subgroups are conjugate to each other.	6
	c)	Let G be a group of order pq, where p and q are distinct primes with p< q and $q \neq 1 \pmod{p}$, then prove that G is abelian.	5
3.	a)	Let R be a commutative ring with unity whose ideals are $\{0\}$ and R only. Prove that R is a field.	5
	b)	Let U be the left ideal of a ring R and $\lambda(U) = \{x \in R : x \mid u = 0 \text{ for all } u \in U\}$. Prove that $\lambda(U)$ is an ideal of R.	4
	c)	Define a maximal ideal of a ring R. If R is a commutative ring with unity and M is an ideal of R, then show that M is a maximal ideal of R if and only if R/M is a field.	7

PD - 084

PD-084

a)	Define Euclidean ring. Prove that the ring Z[i] of Gaussian integers is an Euclidean ring.	5
b)	State and prove unique factorization theorem.	5
c)	State and prove Einstein criterion for irreducibility of a polynomial.	6
	PART-B	
a)	Let K be an extension of a field F and $a \in K$ be a algebraic over F and of degree n. Prove that $[F(a) : F] = n$.	6
b)	Let $f(x) \in F[x]$ be degree $n \ge 1$. Then prove that there is an extension E of F of degree atmost n! in which $f(x)$ has n-roots.	5
c)	Define splitting field of a polynomial over a field F. Determine the splitting field of $x^3 - 2$ over the field Q.	5
a)	If F is a field of characteristic zero and a, b are algebraic over F, then prove that F(a, b) is a simple extension of F.	5
b)	Define a perfect field. Show that any field of characteristic zero is perfect field.	6
c)	If K is a finite Galois extension of a field F and if G (K, F) is a group of all F automorphisms of K_s then prove that $O(G(K, F)) = [K : F]$.	5
a)	Let V be finite-dimensional vector space over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.	5
b)	Define the range and rank of a linear transformation T. If V is finite dimensional vector space over F, then show that $T \in A(V)$ is regular if and only if T maps V onto V.	6
c)	If V is n-dimensional vector space over F and if $T \in A$ (V) has all its characteristic roots in F, then show that T satisfies a polynomial of degree n over F.	5
a)	Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.	5
b)	Define a unitary transformation T. Prove that linear transformation, T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.	4
c)	State and prove Sylvester's law of inertia for real quadratic form.	7
	 b) c) a) b) c) a) b) c) a) b) c) a) b) b) b) 	 Euclidean ring. b) State and prove unique factorization theorem. c) State and prove Einstein criterion for irreducibility of a polynomial. PART - B a) Let K be an extension of a field F and a ∈ K be a algebraic over F and of degree n. Prove that [F(a) : F] = n. b) Let f(x) ∈ F[x] be degree n ≥ 1. Then prove that there is an extension E of F of degree atmost n! in which f(x) has n-roots. c) Define splitting field of a polynomial over a field F. Determine the splitting field of x³ - 2 over the field Q. a) If F is a field of characteristic zero and a, b are algebraic over F, then prove that F(a, b) is a simple extension of F. b) Define a perfect field. Show that any field of characteristic zero is perfect field. c) If K is a finite Galois extension of a field F and if G (K, F) is a group of all F automorphisms of K_s then prove that O(G(K, F)) = [K : F]. a) Let V be finite-dimensional vector space over F, prove that T ∈ A(V) is invertible if and only if the constant term of the minimal polynomial for T is not 0. b) Define the range and rank of a linear transformation T. If V is finite dimensional vector space over F and if T ∈ A (V) has all its characteristic roots in F, then show that T ∈ A(V) has all its characteristic roots in F, then show that T ∈ A(V) has all its characteristic roots in F, then show that T ∈ Ais a polynomial of degree n over F. a) Prove that two nilpotent linear transformations are similar if and only if they have the same invariants. b) Define a unitary transformation T. Prove that linear transformation, T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal