I Year M.Sc. (DCC) Degree Examination, January 2018
 (Y2K13 Scheme) (Fresh and Repeaters)
 MATHEMATICS
 M101: Algebra

Time: 3 Hours
Max. Marks : 80

Instructions : 1) Answerany 5 questions, choosing atleasttwo from each Part.

2) All questions carry equal marks.
PART-A
1. a) Let $\phi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ be a homomorphism with Kernel K and let N be a normal subgroup of G. Then show that $\frac{G}{N} \approx \frac{\bar{G}}{\bar{N}}$.
b) Prove that $\operatorname{Inn}(G) \approx \frac{G}{Z(G)}$, where $\operatorname{lnn}(G)$ is a group of inner automorphisms of G and $Z(G)$ in the centre of G.
c) Show that every group in isomorphic to a subgroup of $A(S)$, for some appropriate S .
2. a) Verify the class equation forsymmetric group S_{3}, by using generator-relation form.
b) Prove that any two p-sylow subgroups are conjugate to each other.
c) Let G be a group of order pq , where p and q are distinct primes with $p<q$ and $q \neq 1(\bmod p)$, then prove that G is abelian.
3. a) Let R be a commutative ring with unity whose ideals are $\{0\}$ and R only. Prove that R is a field.
b) Let U be the left ideal of a ring R and $\lambda(U)=\{x \in R: x u=0$ for all $u \in U\}$. Prove that $\lambda(U)$ is an ideal of R.
c) Define a maximal ideal of a ring R. If R is a commutative ring with unity and M is an ideal of R, then show that M is a maximal ideal of R if and only if R / M is a field.
4. a) Define Euclidean ring. Prove that the ring $\mathrm{Z}[i]$ of Gaussian integers is an

Euclidean ring.
b) State and prove unique factorization theorem.
c) State and prove Einstein criterion for irreducibility of a polynomial.

PART-B
5. a) Let K be an extension of a field F and $\mathrm{a} \in \mathrm{K}$ be a algebraic over F and of degree n. Prove that $[F(a): F]=n$.
b) Let $f(x) \in F[x]$ be degree $n \geq 1$. Then prove that there is an extension E of F of degree atmost n ! in which $f(x)$ has n-roots.
c) Define splitting field of a polynomial over a field F. Determine the splitting field of $x^{3}-2$ over the field Q.
6. a) If F is a field of characteristic zero and a, b are algebraic over F, then prove that $F(a, b)$ is a simple extension of F.
b) Define a perfect field. Show that any field of characteristic zero is perfect field.
c) If K is a finite Galois extension of afield F and if $G(K, F)$ is a group of all F automorphisms of K_{s} then prove that $\mathrm{O}(\mathrm{G}(\mathrm{K}, \mathrm{F}))=[\mathrm{K}: \mathrm{F}]$.
7. a) Let V be finite-dimensional vector space over F, prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 .
b) Define the range and rank of a linear transformation T . If V is finite dimensional vector space over F, then show that $T \in A(V)$ is regular if and only if T maps V onto V .
c) If V is n -dimensional vector space over F and if $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ has all its characteristic roots in F, then show that T satisfies a polynomial of degree n over F.
8. a) Prove that two nilpotent linear transformations are similar if and only if they have the same invariants.
b) Define a unitary transformation T. Prove that linear transformation, T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.
c) State and prove Sylvester's law of inertia for real quadratic form.

